Protein Family Classification with Discriminant Function Analysis
نویسندگان
چکیده
Rapid progress in multiple genome projects continues to feed databases in the world a large volume of sequence data. In this 'post-genomic' era, more efficient and reliable sequence annotation, especially functional annotation of protein sequences, is crucial. Although experimental confirmation is ultimately required, computational annotation of protein sequences has been routinely done, and it is incorporated into major protein databases (e.g. , SWISS-PROT: http://www.expasy.org/sprot/, PIR-PSD: http://pir.georgetown.edu/pirwww/search/textpsd.shtml). Due to a rapidly growing number of new sequences, increasingly more database entries contain only computational annotations. In this paper, we first discuss the disadvantage commonly found in various existing protein classification methods. Next we introduce a set of new methods that can classify protein family sharing very weak similarity. Finally, we describe an algorithm that combines strengths from various protein classification methods to obtain an optimum power for protein classifications.
منابع مشابه
On Model-Based Clustering, Classification, and Discriminant Analysis
The use of mixture models for clustering and classification has burgeoned into an important subfield of multivariate analysis. These approaches have been around for a half-century or so, with significant activity in the area over the past decade. The primary focus of this paper is to review work in model-based clustering, classification, and discriminant analysis, with particular attenti...
متن کاملApplication of Discriminant Analysis for Studying the Source Rock Potential of Probable Formations in the Lorestan Basin, Iran
Understanding the performance and role of each formation in a petroleum play is crucial for the efficient and precise exploration and exploitation of trapped hydrocarbons in a sedimentary basin. The Lorestan basin is one of the most important hydrocarbon basins of Iran, and it includes various oil-prone potential source rocks and reservoir rocks. Previous geochemical studies of the basin were n...
متن کاملFace Recognition by Cognitive Discriminant Features
Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...
متن کاملFeature reduction of hyperspectral images: Discriminant analysis and the first principal component
When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...
متن کاملFisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003